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Product Description

Problem Statement
Many countries across Europe suffer from illegal dumping in areas which are not

designated for dumping disposal. Large amounts of waste in these areas has a significant impact
on the environment, resulting in contaminated water and soil and diminishing human health due
to food-safety issues and spreading of disease through animals attracted to the waste.
Additionally, tourism is negatively affected, hurting the economy of the countries. Detecting and
cleaning these illegal dumps timely is therefore of great importance and a service that facilitates
this desire should stimulate economic growth and waste reuse.

Introduction
Our proposed solution to the problem is called Dumping Mapper. It is a system that uses

two deep learning models to detect dumping and classify the materials that a dumping consists of
in high resolution satellite images taken from the country of Cyprus. The output of these models
is then displayed on an easy to use web application intended for the use of workers of
municipalities in Cyprus. Statistics and functionality to monitor dumping sites and cleaning
operations are also included.

Below is a simple flowchart of the entire system that represents a high level illustration of
how it works:

This report consists of two parts. The first part, Product Description, gives the overview
of the project and the design of the end product. The second part, Technical Breakdown, covers
the technical aspects of the project and an explanation of the decisions that were made during the
project.
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Related Work
The main and one of the most recent works that were used as the guidance to the problem

of the detection of dumping was done by Nandini Kannamangalam Sundara Raman and
Hrushikesh N. Kulkarni (Waste Object Detection and Classification, reference). Nandini K. and
Hrushikesh N. achieved F1-score 0.78 which was considered to be a good result. Our goal was
to, first apply the same principles of the detection model but for the different types of data, and to
improve the performance.

Methodology and Contributions

To evenly divide the work and make the most of the ten week time frame, the team split
the project into five separate tasks: Data preparation, Detection Model, Classification Model,
Backend and Frontend. Each team member was assigned to be responsible for one of these
tasks while helping out other members of the team wherever necessary.

Job was responsible for the data preparation, which included the annotation of the
satellite data and the creation of synthetic data. The satellite data was used by Illya, who was
responsible for the creation and optimisation of the detection model, and the synthetic data was
used by Tashfeen, who was responsible for the creation and optimisation of the classification
model. The output of both models was then sent to Ege, who was responsible for the backend
and database, and to Wishal, who was in charge of creating the web application dashboard and
organizing the full stack end point connections.

The team worked on a week-to-week basis, loosely following the SCRUM architecture,
and had a meeting with the client every week to discuss the team’s progress, what the next steps
for each task should be and to answer any questions that the team had. More technical questions
were delegated to the client’s associates. Moreover, the team met every Thursday to internally
discuss problems and prepare the aforementioned questions for the client and met on short notice
to collaborate and connect parts of the project.

Model Development

Detection model
The initial plan for the detection model was to use the Faster R-CNN state of the art

model. In addition, it was planned to use the transfer learning approach and retrain the model
with the new data. It was later discovered that, first, the pretrained model does not fit our data
parameters, and second, the model implementation was too complex for the scope of the project.
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Thus, a CNN algorithm, represented by VGG-16 was implemented with two classes,
dumping and no dumping. The CNN algorithm is the first part of the Faster R-CNN algorithm,
which later includes the Region Propose Network (RPN). The main module, the CNN, is a deep
convolutional network that proposes regions of interest. The second, RPN, utilizes the proposed
regions for classification of the objects and applying bounding boxes that represent positioning of
the objects on an initial image. It was decided that the first module satisfies the requirements of
the project and provides enough details with regards to the content of the images.

Classification model
Development of the classification model consisted of two parts: data and the model.

Data
The team decided to train the model on synthetically generated images with dimensions

of 600 by 600 pixels, since materials in a dump could not be ascertained from real satellite
pictures. These pictures only contain one type of dumping, material-wise. This was done using a
Python script. For more information on this script, please refer to the Data Preparation section in
the second part of this report. The team also generated images with dimensions of 32 by 32
pixels, as can be seen in Figure 3.0, yet these were only used to initially test the models in a
small dataset of 60 images. The 32x32 images lost important information in relative size of trash
objects, so the team decided to use the 600x600 images instead (Figure 3.1).

Model
The team was sure from the start that a convolutional neural network (CNN) model

would be the best fit for this project. Once the team had a sufficient amount of synthetically
created data, the development of the CNN started. The Google Colab environment was used to
develop and host the model. The data was uploaded into a Google Drive that was then mounted
to the environment. After this, the layer structure of the CNN was designed. A combination of
Convolutional layers , Max Pooling Layers, Fully Connected Layers and Flattening layers were
considered. The activation function used is called RELU and for the output, a SOFTMAX layer
is used.

The model can classify four different types of waste (cardboard, wood, metal and plastic),
but this number can be increased in the future. The output of the model is in the form of
confidence values in percentages for each class (Fig 3.2).
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After this, the model was compiled and the hyperparameters were passed in, along with
an optimizer for the learning rate. There are many potential optimizers that could be used. The
team tried using the Adam optimizer and RMSprop optimizer.

Model Training

Detection Model

The model was trained on the ‘dump_sorted’ dataset with over 1000 images. The number
of iterations, also known as epochs, was 20. The proportion of the dataset is 80/20, where the
first are no_dumping and the last are dumping images. In order to counter data disbalance, the
data augmentation was applied, which then changed the data proportions to 65/35 respectively.
The model architecture was developed according to the VGG-16, with 5 blocks. The model was
trained with 20, 25 and 50 epochs. The best result was achieved with 20 epochs and 70/20/10
ratio of train, validation and test sets respectively. The model training progress and the results of
the model are presented in the Model Testing section.

Classification model
The model was initially trained on the 32 pixel by 32 pixel images. A training set of 60

images differing in material was used to train the model. These images were small in size, so the
model did not need a lot of layers to learn their features. The team initially tried with a
convolution layer taking in a size 4x4 for the convolution filters and a size of 2x2 for the
maxpool layer. The Keras Adam with a learning rate of 0.01 was used. Moreover, the model
learns better if it can train on bigger batch sizes. The limitation of this is that the system runs out
of ram if too many images are processed.

During the later weeks of the projects, the model was trained on a dataset of 600 by 600
pixel images spanning more locations. Near 100 images were created for this purpose, almost 20
pictures of each type of trash. This data, like with the 32x32 images, was split into training,
testing and validation sets (Fig 3.3).

The images are then normalized, meaning the pixel values of the images are divided by
255 so that all the images color values are from 0 to 255 pixels and then we import the dataset
from the drive and make a dictionary of that data which contains both our image data and their
labels. Then the model is fit to the data. With the bigger pictures that were used comes the fact
that CNN needs different layers and more time to learn from it , also the model also has to be
tuned. Moreover, the model also needs a lot of images to actually have better accuracy, rather
than only a few images. The team has tried training with almost 70 pictures and have noticed that
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the network starts to converge but cannot get a good accuracy. The only problem that the team
faces right now is that there is not enough time to make more data.

Note : The number of training parameters has been kept small due to the lack of available ram resulting in a crash.

Model Testing

Detection model
The training progress of the best result is represented below.
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Here, the validation accuracy of the model reaches 96% and the validation loss rate is
below 0.05.

Additionally, the Precision, Recall and F1-score were used to assess the performance of
the model.

Precision - is a measure of how many of the positive predictions made are indeed correct.
Recall - is a measure of how many of the positive cases the model correctly predicted, over all
the positive cases in the data. F1-score - is the metric combining both the precision and recall,
can be referred to as the average of the two.

Classification model

For testing the model, the team used synthetic data that was intentionally withheld from
the model. For now we have made data with only one type of trash in a location. But our goal is
to make synthetic data which contains all types of trash and alongside that it also contains the
percentages of all of the different types of trash in the label.
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The output of the classification model looks as follows.

Experiments

Detection model

The model was trained on the two datasets of different size, 1000 and 2000 images. The
main parameters that were changed for the training are: dataset distribution into train, test and
validation; augmentation parameters and number of epochs. The best performance was achieved
with the dataset of about 1000 images, with 20 epochs, and 70:20:10 ratio of the dataset. The
example predictions are represented in Appendix A (Figure 2.3 - Predictions).

Classification model
When the model was trained on 32 by 32 pixel images, our training dataset consisted of only 70

images, yet the classifier managed to achieve validation accuracies between 40% and 50%. The accuracy
of the model can be enhanced further with a bigger dataset for training the model.

As for the 600 by 600 pixel images, the model performed less desirably, achieving validation
accuracies of only 25% - 30%. The main reason for this is lack of sufficient amounts of data, as we tried
with almost 80 pictures of bigger sizes. This could be rectified in the future to achieve better accuracy.
This and other improvements are discussed under the Conclusion and Future Work section.
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Result and Analysis

Detection model:
The detection model achieved 96% accuracy and 0.96 F1-score. The training time of the

model, using Google Collab, is under 3 minutes. With improved data augmentation and larger
datasets, it is possible to improve the performance even further.

Classification model:
For now, this model does not have enough data, but we have finished the scripts and the model

so that anyone can generate the data from Blender and train the CNN. The maximum accuracy we
achieved was around 50% using 32 by 32 pixel images. For the 600 by 600 pixel images, more
computing power and data is needed to reach accuracies higher than 30%.

Conclusion and Future work

Detection model:
There are still possibilities to improve the output of the model even further. Firstly, as

was mentioned, better data augmentation and larger dataset can improve the prediction results.
Secondly, the fact that there is a high proportion of False Negatives requires a further
investigation about what is causing these False Negatives and, perhaps, improvement of the
dataset,  both quality and quantity wise, to mitigate the issue.

Classification model:
For the future, more synthetic images should be generated using Blender, which in the

ideal situation would make use of all the different locations which are used and detected from the
Detection Model. The aim would be to make around 2000 - 3000 images of each type of trash in
different locations and create images in which more than one type of material is present. These
images would be accompanied by the percentages of trash material in the labels. The accuracy of
this model all depends on how many synthetic data pictures are used and how many different
locations are used.
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Technical Breakdown

Data Preparation - Job Römer
The data preparation part of the project consisted mainly of two tasks: the annotation of satellite

images provided by the client and the creation of synthetic images to make classification possible.
An additional script was developed for utility purposes: an OpenCV script to crop images to the center of
an image.

Annotation
The first 3 weeks were spent getting access to the images on the OneDrive of one of our client’s

associates, since there were some technical difficulties with their account and permissions in the
OneDrive. The client had provided us with a total of 15.000 satellite images, divided in sets of 15 between
locations from the country of Cyprus.

Annotation of these images consisted of sorting them based on whether dumping occurs in the
picture or not and dividing the pictures between two respective folders on a Google Drive shared by the
team members. The reactive nature of this process meant that a larger number of these images were
prepared in advance and based on input from the team members working on the models, more pictures
were annotated (or created in the case of the classification model).

To make the process more efficient and streamlined, the locations were initially divided between
the team members, where Job took more locations to annotate. The table in Appendix B shows how the
locations were specifically divided between team members and how far each member got with the
annotation.

One important aspect to note is the importance of the title of each picture; this name cannot be
changed as it contains important data on the longitude and latitude of the location which can be used to
trace back where on Cyprus the dumping occurred. However, due to the cropping that was used for the
pictures, the longitude and latitude may not be exactly correct but this is not an issue that makes the
system unusable, but rather a small inconvenience that could be rectified in future work if deemed
necessary.

During week 6, the team also made a decision to crop the satellite images to their center, which
would have dimensions of 600 pixels in both width and height. This decision was made to make model
training faster and future annotation easier and more efficient. An OpenCV Python script was made for
this purpose, which is also on the team’s Github repository.

After 6 weeks of annotating, the decision was made to halt the annotation of the locations of the
other team members, partly due to leftover work on their parts of the project but mostly because the type
of annotation that was required for the detection model unexpectedly changed to bounding boxes before
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changing back to the original sorting annotation. The Difficulties section provides some more information
about this problem.

The amount of images that were annotated during the course of this project totals 4.634 (only
1000 were used due to resource constraints). The plan was to incorporate more verification of the
annotations and to do more annotations, but time constraints made this difficult to realize. Additionally,
another 765 images were annotated with bounding boxes using the label-studio software and free trial of
the V7 annotator service, though these annotations remain unused in the final version of the models.

Synthetic Data Creation
It is impossible for the human eye to determine what materials are present in a dump from a high

resolution satellite image, so the team decided to train the classification model on synthetic data that was
also generated by the team. The advantage of this is that the materials of the placed objects are known and
the picture can thus be labeled and used for training.

The first task was deciding which software would be used to create the most realistic looking
synthetic data. The most reasonable options were scripts using the OpenCV python library or python
scripts using Blender and its built-in module and runtime environment.

Using OpenCV would be easiest and most time efficient, due to the fact that dumping can be
simulated with a collection of white dots scattered in an area. Blender would be more time consuming, but
would allow the creation of more realistic looking images, since 3D models of real trash objects could be
used to create realistic dumping sites that could be placed on satellite images.

Below are two pictures comparing the synthetic dumping sites that were created by both scripts.
OpenCV is on the left and Blender is on the right.

The decision to use Blender was quickly made; the trade-off between the efficiency and realism
of the pictures was important for the team. The desire was to have the most realistic images possible, to
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hopefully more successfully train the classification model. Moreover, another downside of OpenCV is
that it ironically runs into the problem that the team is trying to fix by creating synthetic data, namely that
it is impossible to label the images created by OpenCV. It is unknown what the white dots represent and
therefore the material of the “dump” cannot be ascertained, meaning this picture would be impossible to
label, like the satellite images.

A workaround for this would be to create custom “objects” by using the dots or other shapes that
OpenCV provides and placing those on the map instead. The team felt that this would take too much time
for a sub-par result and therefore chose to go with Blender instead.

Blender
This script was adapted from one that our client shared with us and it works in a straightforward

way, in that it chooses a spot on a background and places specific trash objects in this spot to create fake
dumps. Satellite pictures without dumping were carefully curated for potential spots where dumping
would most likely occur. From observations made during the annotation combined with logical thinking,
the team determined that dumps most often occur in places that are easily reachable by car, meaning near
roads or open areas connected to roads. The previously shown pictures demonstrate this observation and
its practical application as well.

The curated places were point-annotated using label-studio, until a coordinate dataset was created
of potential dumping locations. The Blender script then iterates over this dataset and corresponding
backgrounds, which are mapped to a background plane, and places dumping objects of certain materials
on this satellite image. Variables determine the number of objects in the dump, their scale and rotation and
how far apart the objects can appear from each other, which proved invaluable in experimenting with the
objects.

The objects that were used were mostly free objects curated from sketchfab.com, a website
hosting downloadable Blender objects. Most of them did not have textures/materials and differed in scale,
so the sizes of objects were manually altered to be more in line with actual real-life trash objects and
materials were created to simulate colors commonly found on trash objects (red soda cans and beige
cardboard boxes for example).

Once the objects are placed on a background mapped to the plane, the picture is rendered from a
top down perspective. While there is no implementation for it in this system, a future improvement would
be to add the material present in the dumps to the end of the title of the picture automatically, thus
labeling it. Within the duration of development of this project, these pictures were manually renamed by
the team.

The pictures are rendered with dimensions of 600x600 pixels and labeled through their title. As
explained, the team also experimented with manually cropped 32x32 pixel images created from the
generated synthetic images for the classification model, but due to loss of relative size of the objects (the
size of objects related to a house for example), 600x600 pixel images were used instead.
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In total, 87 600x600 images were generated to train, test and validate the classification model,
which admittedly is a very low amount of images. The Difficulties section sheds some light on why there
are not many images. 9 more 600x600 images were generated and curated with the script to show the
realism of the data that could be created with the script. These contain many types of trash objects placed
in spots that dumping would usually occur. Lastly, 80 32x32 pixel images containing one type of waste
were created for the classification model as well, but these remain unused for the final version of the
models.

Difficulties

Bounding boxes versus sorting labeling
During week 6 of the project, the team came to a dilemma about the detection model, or rather the

data that would be used to train it. Due to a miscommunication between the team and the client, there was
discourse in the way to proceed: the model that was being developed was a deep learning model and it
used a dataset that required bounding boxes to work, while the client believed the team was working on a
contrastive learning model for which labeling by sorting would suffice, resulting in two different sides of
what the team believed to be correct. In the end, the team decided to switch to bounding box annotation
since this would require less effort than researching and writing a completely different model.

One week later, the team found another dataset that would work with the sorting annotation and
switched back to the prior annotation method. This detour significantly reduced the time the team was
able to spend on the annotations and generation of synthetic data, explaining the relatively little number of
images.

Blender
The team had trouble understanding and using the Blender script, as none of the members were

familiar with the use of this software nor its coding environment. It took 4 weeks to get a preliminary
piece of data out of the script, partly because there was little to no documentation or explanation and the
fact that questions needed to be referred to our client’s associates, which would introduce unavoidable
delay since they would not be available at all times. This process made using the Blender script very time
consuming and this constitutes the main reason as to why only a small number of realistic images could
be generated.

Moreover, the pictures created by this script are not completely realistic due to weird
mapping/skewing of the background images. These transformations of the images make it very hard, if
not impossible, to accurately place trash objects in very specific places (resulting in objects in places
where the coordinates were not placed in the dataset, like on top of trees), as well as disrupt the relative
size of roads and cars.

In the interest of time, it would probably have been better if the team had chosen OpenCV to
create the synthetic data, but the team does not regret its decision, as the Blender images show much more
potential than the OpenCV images, especially if these images are improved further.
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Future Work
In the future, multiple aspects of the data for this system could be improved. The most prominent

of these improvements lies in the amount of data. Generally, more data is better for deep learning models
and the relatively small datasets that were used for this system hurts their potential.

Annotation
While a large number of images were annotated, there is always the possibility of human error

influencing the models. The team had used a verification process for the annotation, but due to time
constraints and temporary switch to bounding box annotation, this process was abandoned during the
sixth week of the project. To reduce the amount of human error in the dataset, a fully adopted verification
step where team members verify the annotations made by other team members would be beneficial for
future use of the models and dataset.

Moreover, the data should have been cropped before it would be annotated. Annotating
6000x8000 pixel images added a significant amount of required time due to zooming and careful
consideration of what the center of the image would be. With a cropped image, both of these parts of the
process would be eliminated, saving minutes per image.

Synthetic Data
The main aspect to improve on is to make the images more realistic in a more efficient manner.

While adaptations were made to have the script produce multiple images in one iteration, the most time
consuming task is the curation of background images and consequent labeling using the coordinate
dataset. If there would be a quicker way to label the images in this way, it would significantly increase the
amount of images that could be created in a shorter time frame.

To create more realistic images, multiple things should be taken into account. The first issue to
solve is the perceived issue with the skewing of the background image and mismatch of the coordinate
dataset and the location where the objects end up. As of now, the team does not know what causes this
issue, but it is creating less realistic images and should be researched further.

The second improvement would be to calculate the size of objects in comparison to the resolution
of the background image. Currently, the size of the objects is decided by the human eye, which may cause
objects to be unrealistically large or small. Given the resolution (pixel to cm ratio) of an image and a
reference object/its dimensions in real life, the size of the Blender object could in theory be calculated to
be as precise as possible, increasing realism of the data. This will be challenging due to the fact that
Blender does not have a pixel unit system, meaning one would need to find out what 1 pixel is in the
metric or imperial system that Blender supports.

The third and final improvement is to add more objects (and material types), possibly even
custom objects and texture materials, to populate images with. This would likely increase the overall
usefulness of the classification model (since it would have more classes) and increase its performance due
to the introduction of new objects of the same material.
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Detection Model - Illya Averchenko

Research
Before selecting a model for my task I decided to look at the nuances of the satellite

images that we were provided with. I wanted to get a better understanding of the type of data we
are working with and select the most appropriate model based on my observations. Thus, I
outlined for myself the spatial resolution parameter, sometimes, called Ground Sample Distance.
Spatial resolution describes the minimum separation distance between two objects to
differentiate between them. The spatial resolution is measured in distance between the centers of
two adjacent pixels. Having that in mind, I already saw a possible problem with using the
majority of the models that are available. The essence of the problem is that an arbitrary model
resizes images and generates a new image with a different spatial resolution. This changes the
number of pixels occupied by the objects on the image. Thus, eventually, after convolutional
layers and MAX-Pool layers, the objects “vanish” from the image without being detected by the
model. To tackle this problem, Faster-RCNN was considered. The algorithm of detecting small
images goes as follows: first, the model does the partitioning of the test image into a smaller
images; then, adapts the image to the desired model image size with suitable overlap between
partitioned images; import the test image into the model; finally, measure the impact of the size
of the images on accuracy to decide the most suitable object size.

The graphical representation of the algorithm is provided in Appendix A Figure 2.0 -
Ground Sample Distance and Figure 2.1 - Faster R-CNN split.

Initially, I intended to use the transfer learning approach - use weights from previously
built models and retrain the model with our data. The assumption was that this approach could
save the model development time and provide high accuracy.

After testing the Faster R-CNN model that was pre-trained on the COCO, KITTI and
Open_Images datasets I realized that transfer learning is not the solution for our task. The reason
for the poor performance (very low learning rate and accuracy <5%) and slow training is due to
the lack of satellite images in these datasets as I discovered later. The model is simply not used to
the satellite type of view.

Thus, the backbone of the Faster R-CNN model was trained on different data and
therefore has weights that are not suitable for our data. The transfer learning cannot change the
backbone of the model but only the detection head and so the detection model will not perform
well on our dataset, as already tested.

Eventually, I trained the model from scratch. I implemented the first part of the Faster
R-CNN which is a CNN model to classify the ROIs of the images into the two classes, dumping
and no dumping. This model provided sufficient accuracy for our task.
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Set up
Hardware:

I decided to use Google Collab Pro platform, because it provides convenient execution of
code and a decent performance of the model training. In Google Collab I used the NVIDIA Tesla
P100 GPU with advanced RAM consumption of the environment.

Software:
I used TensorFlow Object Detection API to set up a model faster and adjust the layers of

the model more convenienlty. In addition, I used a number of libraries such as Keras, NumPy,
Pandas, CV2, Matplotlib, Sklearn and OS.

Data processing
Before feeding the model with the data, the dataset had to be prepared. One of the

specifics of deep learning models is the data that is passed to the model to get predictions and the
data that the model was trained on have to be of the same size. The model input size was set to
be 600x600px which provides enough data points for the task and does not overload the training
process due to the low data size. The images that we received from the client were of
approximately 6,000x8,000px. Thus, it was necessary to either scale down the images to a much
smaller size or to crop the images into smaller segments for both the model training and the
predictions improvement.

The idea is to split the images into sectors of 600x600px and start with only central
sectors of the images for training the model. Later, expand the dataset with more sectors,
including a larger “focus”. The main advantage of this is to save as much data when passing the
6000x8000px images to the model which has 600px as the minimum and 1000 as the maximum
size of the image. Resizing the images to the input format of the model would cause downsizing
which would change the spatial resolution of the image and result in data loss. It is also generally
a good practice to reduce the size of images when training. The full size image was partitioned
into 144 smaller images of same size - sectors, each of size 600x600px (Appendix A Figure 2.2 -
Image cropping).

There were several sets of pre-annotated images. The first dataset that the model was
trained on is about 1000 images separated into two folders dumping and no_dumping, according
to the content of the images. The second dataset was prepared to achieve better performance of
the model and about 2000 images were prepared for the training.

Besides, the data was randomly split for the model training, test and validation. Random
split and shuffling provides unbiased evaluation of the model and improves the performance. The
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datasets were split into 0.7:0.15:0.15 and 0.8:0.1:01 ratios for train, validation, test sets
respectively.

Model Configuration
I implemented a CNN model, which has the structure of the VGG-16 network and has the

following architecture:
1.InputLayer - 2. ZeroPadding2D - 3. Conv2D - 4. BatchNormalization - 5. Conv2D -
6.BatchNormalization - 7. Activation - 8. MaxPooling2D - 9. Dropout - 10. Conv2d - 11.
BatchNormaliztion - 12. Activation - 13. MaxPooling2D - 14. Dropout - 15. Conv2D - 16.
BatchNormaliztion - 17.Activation - 18.MaxPooling2D -19. Dropout - 20. Flatten - 21.Dense -
22. Activation (ReLU) - 23. Dense
Total: 5 blocks, 1,500,000+ parameters.

The model classifies the new data with 92-96% accuracy and still can be improved with
larger datasets and augmentation (although more RAM is needed). 20-23 epochs were enough to
get good results.

For the data augmentation the following functions were applied: GaussianBlur,
SigmoidContrast, Fliplr, Crop, LinearContrast, Multiply, Affine.

Observations
Although the model provides 96% test accuracy and 0.96 for F1-score, it still gives a lot

of False Negatives. Having more False Negatives leads to skipping dumping on locations and
thus, failure of the system. However, in our context it is more preferable to get a false alarm -
more False Positives. Thus, if the model detects dumping on an image when in reality there is no
such, then the chances that the user of the system skips dumping will be quite low.

The graph below shows the training accuracy and the loss progression through the
training of 50 epochs. It is clear that after 20 epochs the accuracy of the model does not improve
compared to the final result. In this example, we are particularly interested in validation accuracy
which shows the prediction accuracy of the model on the test set - images that the model is new
to.

21



Dumping Mapper - Group 2

In addition, the confusion matrix was created to see more detailed information about the
predictions. Here, the values of True Positives and True Negatives are high, which indicates that
the model correctly predicts on the classes. However, the value of False Negatives can be
improved further - 0.07. Thus, there is a 7% chance that the model categorizes dumping as no
dumping, and thus skips the objects of interest on the images.

Difficulties
The main difficulties that I faced during the project was to select an appropriate model

architecture. So far, there are very few projects available that are aimed at detection or
classification of objects from a satellite or even drone view. Most of the datasets and pre-trained
models contain a horizontal view perspective, not from a “bird’s-eye view”, like from the
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satellite’s camera perspective. Thus, it took a lot of resources to prepare the necessary data and
the model specifically for our task.

Besides, there was a lack of resources available on Google Collab. In order to train the
model with more data, for example, with the second dataset that has over 2000 images, it was
required to have more RAM available, which required a more expensive plan to purchase and
was out of the available expenses of the project. Besides, it took a lot of time to decide on the
size of data for the model and required additional research.

Future Work
There are still possibilities to improve the output of the model even further. Firstly, as was

mentioned, better data augmentation and larger dataset can improve the prediction results.
Secondly, the fact that there is a high proportion of False Negatives requires a further
investigation about the reasons for having ones and, perhaps, to improve the data quality of the
datasets which might be initially the reason for this.
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Classification Model - Mian Tashfeen Shahid Anwar

Research
Research was conducted to determine what type of neural network should be used for this task.

The team learned that there are three different types of neural networks ANN , RNN and CNN. The CNN
network is mostly used for image classification tasks, so this makes it a good candidate for our task. The
team determined that a convolutional neural network with RELU and softmax layers would be the best for
this task, because convolutional neural networks are built to learn from pictures by breaking them down
into smaller parts.

Apart from this, the team found out that there are three different techniques to train a CNN
(Training from scratch , Transfer learning and feature extraction). In the case of this model, training from
scratch would be the most obvious to use, due to the type of data that would be used.

A substantial part of the research also lies in what kind of locations the team should be using in
our data, what kinds of trash would be put into those pictures and where the data would be positioned.
Moreover, one of the most important parts of the research process was to determine how to label the
synthetic data, because the end goal is to have percentages representing how much of one type of trash a
dump consists of. For that, the team can actually make labels in the form of percentages while making the
synthetic data.

At first, the model would be attempted to train on only one kind of material and if this would be
successful, the model would be trained on mixed data. One of the challenges in this project is to figure out
the real size of the layers because the type of trash is very small. This was also the main reason behind
using 32 pixel images by 32 pixel images first.

Using Convolutional Neural Network for Image Classification | by Niklas Lang | Towards Data Science

Tensorflow Course :
https://www.udemy.com/share/101Wje3@uvz6llwZRQ9zfzB69zFeErMTI1ndwY0S8C-L8IUQM1QRQ
WsKHakVex7GFCDBWsr-EA==/

Video Explaining CNN:
https://nl.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--
1489512765771.html?gclid=Cj0KCQiAgribBhDkARIsAASA5bv9uNwmxSqx5vvHggJuJyDnw0BNyZx
nqqCerM6rLdeXx7gbj83CDMIaAk_9EALw_wcB&ef_id=Cj0KCQiAgribBhDkARIsAASA5bv9uNwmx
Sqx5vvHggJuJyDnw0BNyZxnqqCerM6rLdeXx7gbj83CDMIaAk_9EALw_wcB:G:s&s_kwcid=AL!8664
!3!604194414418!p!!g!!convolutional%20neural%20networks&s_eid=psn_45716723653&q=convolutio
nal%20neural%20networks
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Setup

Data
For making the data, Blender was used. All pictures were collected into Google Drive and sorted

into different folders (cardboard, metal, wood, plastic). Then, the data was split into 3 datasets (training,
testing, validation).

The name of the image we would create was also important; we needed to keep the
coordinates of the locations in the title. The pictures need to be classified and uploaded to
Cloudinary. This data would need to be processed by the frontend, so a POST request is also sent
to the frontend.

Code
After that, Google Colab was used. The Google Drive was mounted into the Google Colab

environment and the latter was set up. Code blocks would import the different libraries that are required
for the model, some of which are shown below.

Lastly, there was a problem with sending data to the server using a POST request. This is why the
team pivoted to using PyCharm in addition to Google Colab.
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Now, we have the code for the model and for uploading the files from the model to the Database
in GoogleColab and we have the code for retrieving images from the Database and making a POST
request to the frontend in Pycharm. In Future Work, these two files can be combined and the code can be
run together in a different environment, excluding Google Colab. The problem with Google Colab is that
it uses a hosted runtime, which means that the moment  a connection with the backend is made, it is
rejected automatically.

Data generation
For generating the synthetic data, a Blender script is used. Before using this, a satellite image is

taken and an area without dumping is cropped a square of 600 by 600 pixels.

It is important to be specific in which locations are used. If dumping is placed in the wrong
location or if the dumping overlaps too much, the data set would not be useful. On the other hand, more
objects have to be made to actually get a good accuracy when the model is tested on the real dumping
image.

The initial plan was to generate data of 32 by 32 pixels because we wanted to make bounding
boxes around the different types of objects on the picture that would be received from the detection model
(600 pixels by 600 pixels).  Then getting each picture per object separately and testing it with the model.
Then we could have made the model to

● Get picture from detection model

● Detect specific objects

● Take 32 by 32 pixel image of that object (Model would be trained on synthetic data 32 by 32
pixels)

● Classify it

● Then count the number of pictures classified in each category and calculate the percentages of the
type of trash present

On the other hand, when 600 by 600 pixels images were used, the plan changed. The new plan
was:

● Get picture from the detection model

● Classify it

● Get percentages
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Changing the number of pixels to 600 would result in being able to classify the whole picture in
one go, because differentiating each picture based on percentages would now be possible. For example if
50 cardboard objects, 50 metal objects, 50 wood and 50 plastic objects are placed in a synthetic data
image, it will make the percentage of each object to 25%.  This information can be used to label the
image. The softmax layer already provides us with the percentages of each class. However, the labels
would be given by the name of the picture.

Model training / testing
For training the model, a CNN which takes in convolutional layers, maxpool, dense and flatten

layers was set up. Parameters can be given to these layers to, for example, change the size of the
convolution filter from the convolutional layers, change the size of maxpool layers which basically makes
the filters smaller and increase or decrease the amount of convolutional layers and maxpool layers. Lastly,
a flattening layer and dense layers are used.

Experiments can also be performed with different learning rates, different optimizers, different
and weight initializers. There is also a possibility to try different activation functions but in this case the
best would be RELU and softmax.

During the model training, the biggest role is played by the amount of data that is used and the
quality of said data. In this case, a lot of images would be needed.

A lot can be changed in the model given more images. To train the model better, very realistic
images need to be put in (Figure 3.1). Otherwise, it would be very hard to make the model predict
correctly on a real image.

To actually train the model, you can use the .ipynb file alongside the pictures in your own Google
Drive. For testing the model, the testing dataset can be provided to the model and it will try to predict the
class of all the images in the testing folder.
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Difficulties

The difficulties that were faced within this task are mainly related to the generation of data. There
was little time to create realistic images and a satisfactory number of them. The model was developed
early but training and optimizing the model to get a better accuracy is hard without a proper amount of
data, because the model is trained from scratch.

With enough time, sufficient data can be generated, yet the model still needs to be trained. The
first problem that was encountered, had to do with batch sizes and required RAM. An improvement
would be to make the batch size smaller because the Google Colab environment keeps on running out of
ram. Since this model is being trained from scratch, it needs much more data and processing power.

Lastly, there was not enough time to generate a lot of data and train this model to get a good
accuracy.

Future work

In future work, many tasks will have to be performed, which range from making more synthetic
data and then trying to train and tune the model to have better accuracy until a point is reached where the
model can actually be tested on a real dumping image.

Moreover, the model only detects one type of dumping at a time but a future improvement would
consist of extending the model to detect dumping based on percentages of different classes. For that, the
synthetic data creation and labeling techniques will have to be altered.
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Backend - Onen Ege Solak
This application uses mainly MERN(MongoDB, Express, React, Node) Technologies:

- MongoDB: Database
- Express: Web Framework
- Node: Web Server
- React: Client-side application
- Cloudinary: Drive for storing the images

Moreover, the MapBox library is used for building the geocoding application. The
Mongoose library is used for the connection between Node and MongoDB. All these frameworks
and applications are JSON object oriented and in this project we are working with JSON objects.
Some other libraries such as Bcrypt and JWT tokens are also used for this project. Cloudinary is
chosen for storing the images of the detected dumps.

Database
The database consists of two collections: Municipalities (Districts) and Dump.
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The Municipalities (Districts) collection and the Dump collection are connected through
the “districtId” field where the id of the municipality is stored within each dump data. In the
dump collection, the information of the url of the image inside the Cloudinary is stored in the
“imageurl” field and the type of the dump that is gathered from the classification models is
stored in the “type” field. The longitude and latitude of the is used for identifying the dump since
It is unique to one dump. That is why the long and lat field is requested when calling a route.

Connection with the Front-end
The connection between front-end and back-end is made with Node and Express which

are the application tier frameworks of the MERN stack. First, the setup of the server is
implemented using Node.js. The server started at localhost and on port 3001. This way the
environment for the connection is set. For testing the application side of the project, Postman
was used.

After that, the routes were implemented to create a communication between the database
and the client side server using Express.js. The middleware for the api’s are implemented so that
the routes can be taken to another folder called “routes”. In that table, there are two files: one for
the workers and one for the dumps. The list of API calls of the workers file is as follows:

-”./workers”: for retrieving all the Respworkers in a district
-”./delworker”: Deletes a worker value inside the Respworkers field.
-”./addworker”: Adds a worker value inside the Respworkers field.
-”./login”: Provides credentials for logging in a district page.

“./workers” route returns all the workers currently working in the municipality. The route
constructs a “muni” document by finding the requested username in the database and once it is
found the function returns all the workers that the municipality has with a status(200)
message.See Figure 4.0

“./addworkers” and “./delworkers” routes work in a similar way. The routes find the
document using “.findOne()” and constructs a “muni” document that has the same values as the
found document and for adding the worker value it uses ”.push()” function and for deleting uses
the “.pull()” function to edit the values inside a field. The “./addworkes” route also constructs
another document called “check” with the ".findOne()” function to check if the added worker
exists inside the document.See Figure 4.1
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“./login” route uses JWT to communicate the credentials between the MongoDB and
React client server and the password fields for the Districts are manually hashed and added as a
value. The route uses JWT token procedure to provide security for the login. With the “./login”
route the username (for municipality) and password (for district) are requested from the user to
construct a municipality parameter called ”muni” by finding the table according to the provided
username inside the database. When the municipality corresponds to the requested username
found, it retrieves its hashed password from the database and compares the requested password
with the hashed password inside the database using the bcrypt.compare() function.
Bcrypt.compare() function hashes the requested password and compares it with the password in
the database that is already hashed. If the passwords match, the JWT token is sent to the frontend
as well as the login successful message.

As for the “dumps” file the list of API calls are the following:
-”./getdumps”: Returns all the values of the dump collection
-”./deldumps”: Deletes a dump document from the dump collection
-”./createdump”: Creates a dump document to dumps collection
-”./confirmdump”: Updates the status field to “confirmed”
-”./suspectdump”: Updates the status field to “suspected”

“./getdemps” route constructs a document called “dump” and finds all the documents in
the collection using find() without parameters and returns them. See Figure 4.2
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“./deldump” route constructs a document called dump by requesting latitude, longitude
and imageurl. It then calls the function “.findOneandDelete()”. This function uses longitude and
latitude as parameters. Cloudinary library on the other hand uses the “imageurl” to erase the
image of the dump from the drive. See Figure 4.2

“./confirmdump” and “./suspectdump” routes use the same methodology. They first
define the field value to be updated and they construct a variable called “dump” with the
requested parameters with the “.findOneandUpdate()” function and they update the value that is
defined. See Figure 4.3

“./createdump” route requests longitude, latitude, imageurl and type fields and calls a
function called “reverseGeocoding”. “reverseGeocoding” function connects to the MapBox site
to retrieve the address information for the “address” field. It also retrieves the district
information from the longitude and latitude which is to be used as a “districtId” to group the
dumps according to districts. The dumps are automatically set as “suspected” in their “status”
field and the rest of the field values are filled from the request body.
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Future Work
New functionalities such as messaging or improvement of the statistics supported by the

backend can be implemented. Some bug fixes and protection against cyber attacks can be
improved. The application can be modified and further be used for more local governments such
as cities or villages.
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Front-end- Wishal M Sri Rangan

Design Methodology
The web application was designed following the atomic design pattern approach. The main

reason for using this design methodology when organizing a React application is to isolate the
environments of each feature component. When isolated, code becomes a lot more readable and modular.
A single instance of a feature will make testing more straightforward, thus improving the overall quality
of the dashboard.1 See Figure 5.0.

The design pattern approach elements are as follows along with their implementation in this
web application:

● Atoms: Consists of basic elements. In this web application this includes buttons, icons, input
fields, scroll, text and headers.

● Molecules: Grouping atoms to build functionality. This includes pie charts, bar charts, navigation
tabs and dumping site view tabs.

● Organisms: Combining molecules to form an organism that makes up a section of the website. In
this instance, the home, messages, navigation, profile and statistics component are part of
organisms.

● Templates: Combining organisms to form a page. In this project this would be the authentication
and client page.

● Pages: An ecosystem that views different template renders. In this application this is the App.jsx
file.

Moreover, the dashboard was designed to incorporate several React libraries that help with the
visualization and ease of use of the application. The libraries and frameworks used are listed as
follows:

1 https://medium.com/@janelle.wg/atomic-design-pattern-how-to-structure-your-react-application-2bb4d9ca5f97
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1. Formik2: A form library that handles the tracking of values, errors and visited fields, aiding
validation and taking care of form submission processes. This library will be used to help build
the authentication page and the employee administration section.

2. Mapbox GL JS3: A client-side Javascript library that renders 2D Mapbox maps as dynamic visual
graphics with OpenGL in any compatible web browser, without using additional plugins. It comes
with several user interface elements notably markers which will primarily be used in visualizing
dumping locations on the interactive maps. Moreover, there are optional controllers that were
implemented on the map such as zoom and scale controls.

3. Flux: React Flux was needed to make use of the dispatcher which helped keep track of navigation
tabs.

4. React-Chartjs-24: A Javascript charting that was used to implement bar charts and pie charts to
visualize data received from the backend. Chart.js makes use of interactive charts that make data
visualization very convenient.

5. React Select5: A select input control for React.js with a multi select feature that aids in the
implementation of the map’s filtering feature.

6. Axios6: A promise based HTTP client for the browser and node.js
7. Fortawesome: A font and icon framework used to implement the icons on the dashboard.

As the atomic design pattern approach was used to design the dashboard, the application was split
into two separate pages:

1. Authentication: This consists of the sign up and login process for the employees of the
municipality of each of Cyprus’ districts.

2. Dashboard: The main page visualizing the data received from the back-end. The navigation will
consist of the home, messages, statistics and profile section. In addition, there will be a night
mode and logout functionality.

Authentication
The authentication page will handle the login process for the district employees of the dashboard.

After discussion, it was decided that it is best that only one account per district existed and there is no
registration process to create new accounts. In order to simplify validation and handling submission of
input values, the form library Formik is used. This will also speed up the testing process for the
authentication page further in development. The authentication process is also handled by axios making
the necessary POST request with a user’s username and password in order to access the dashboard as well
as obtaining an access code, district identifier as well as the district name which will be needed in order to
get specific information about districts or handle employee management. See Figure 5.1.

6 https://github.com/axios/axios

5 https://react-select.com

4 https://react-chartjs-2.js.org/

3 https://docs.mapbox.com/mapbox-gl-js/api/

2 https://formik.org/
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Client

The client page will consist of 4 sections:

Home

The home page consists of two subsections, the map display as well as the basic statistics display.

The map display includes the interactive map that has been implemented using Mapbox GL JS.
As was aforementioned, the interactive map will be displaying markers where users will be able to spot
confirmed and suspected dumping locations in the form of red (confirmed) and orange (suspected)
markers. An alternative solution for the map display would have been the Google Maps API but it is
currently under a paywall and therefore MapBox was chosen to be the free alternative. Furthermore,
functionalities to report and clean each of these dumping spot markers has been implemented. This was
done by making use of the axios library using GET and POST HTTP requests to the backend. When a
marker is selected, a satellite image of the selected location will be displayed along with relevant dumping
details such as the address, dump type and its confirmed or suspected status. With the use of the React
Select library, users can filter dumping based on two parameters: district name and dumping type.

The basic statistics subsection includes a bar chart that shows the total number of dumping
occurrences in each district of Cyprus. Moreover, this section includes a pie chart that shows the number
of confirmed and suspected cases of dumping in the district from where a user is logged in.

Finally, a pie chart of the percentages of detected, reported and cleaned dumping locations and a
bar graph of the number of new dumping per week in the district that the employee works in will be
displayed. The library that will be used for this is Chart.js as I am highly familiar with how the library
functions as well as its simple charting functionalities. I have used the react-select library to create a
dropdown menu with possibilities to display markers on the map based on the type of dumping detected
as well as Cyprus districts. The algorithm for the filtering process using React Select can be found in
Figure 5.2.
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As mentioned previously, when a marker is selected, a site view card is displayed showing all
relevant information about a dumping including an image. This image is retrieved from the Cloudinary
storage where all dumping images are stored.

Messages

This section was designed to display incoming alerts of new dumping sites as well as messages
regarding the status of these dumping sites. Moreover, an additional functionality this page will include is
the ability to show the dumping on the map when the button “Show on Map” is clicked. The functionality
of this section of the dashboard unfortunately can not be implemented as the current data received from
the models and back-end do not include any information on time. Therefore this will be kept as a future
possible functionality to add to the dashboard.

Statistics

This section will be displaying all possible metrics of dumping data. This would include
molecules such as pie charts, bar charts and polar charts. Similar to the problem stated in the previous
section, the readiness of the statistics page is lacking due to the missing time information on dumpings
and therefore the full implementation could unfortunately not be completed.
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Profile

The profile section will include basic district information such as the username as well as the
associated district the user has authority over. Additionally, the profile section has a functionality to add
and remove district workers from the database. This was implemented using the help of Formik to handle
the form submission and validation as well as axios to make HTTP requests to the backend of the
application in order to add or remove workers.

Miscellaneous

Dark mode
Dark mode was implemented in order to provide users with options for their preferred theme of

the dashboard.
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Logout
The logout functionality was implemented making use of local storage. When a user logs in from

the authentication page, they are provided with an access token which decides whether a user is allowed
access to the Client page of the app. This access token is stored in the local storage. When logging out, the
local storage is cleared, switching the viewport to the Authentication page.

Difficulties
As mentioned in the section above, the Messages and Statistics page could unfortunately not be

implemented completely due to the lack of time information. The filtering options for different dumping
types also are not fully functional as a bug occurs when a specific type of dumping is selected to filter the
map. Furthermore, the Cascading Style Sheets of the dashboard is currently not optimized for a mobile
application or a mobile viewport as more time had to be devoted into the connection with the backend and
handling data received from it.

Future Work
In regards to future work, the main priority would be to fix the existing bugs and unoptimized

features of the dashboard as well as having the full functionality of the messages and statistics page to be
complete so that the dashboard is ready to use for an end consumer/user.
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Appendix A

Figure 2.0 - Ground Sample Distance

Figure 2.1 - Faster R-CNN split
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Figure 2.2 - Image cropping

Figure 2.3 - Predictions
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Figure 3.0 - 32 pixels
by 32 pixels image.

Figure 3.1 - 600 pixels by 600 pixels image.

Fig 3.2 - Output of the softmax layers.
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Figure 3.3 - Data Directory structure.

Figure 4.0
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Figure 4.1                                                                Figure 4.3

Figure 4.2
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Figure 5.0 - Frontend
directory structure
following the principles of
the Atomic Design Pattern.

Figure 5.1 - Example of the data obtained from a successful authentication.
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Figure 5.2 - District and dumping type filtering algorithm.
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Appendix B - Annotation Distribution

First Batch

Responsible
Person

Assigned
Locations to
Annotate

Assigned Locations to Verify Annotation
Progress

Wishal 1-40 41-64, 161-181 Completed

Tashfeen 41-80 81-104, 182-202 Completed

Illya 81-120 121-144, 203-223 Completed

Ege 121-160 1-24, 224-247 Completed

Job 161-249 25-40, 65-80, 105-120, 145-160 Completed

Second Batch

Responsible
Person

Assigned Locations to
Annotate

Assigned Locations to
Verify

Annotation
Progress

Wishal 327-352 249-259, 463-499 Not started

Tashfeen 301-326 327-337, 426-462 Started, not
finished
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Illya 249-274 275-285, 353-389 Not started

Ege 275-300 301-311, 390-425 Completed

Job 353-499 260-274, 286-300, 312-326,
338-352

Not started
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